RANKL-induced DC-STAMP Is Essential for Osteoclastogenesis
نویسندگان
چکیده
Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor-kappaB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell-specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis.
منابع مشابه
Regulators of osteoclast differentiation and cell-cell fusion.
Osteoclasts are multinuclear giant cells derived from osteoclast/macrophage/dendritic cell common progenitor cells. The most characteristic feature of osteoclasts is multinucleation resulting from cell-cell fusion of mononuclear osteoclasts. Osteoclast cell-cell fusion is considered essential for re-organization of the cytoskeleton, such as the actin-ring and ruffled boa...
متن کاملMiR-30a attenuates osteoclastogenesis via targeting DC-STAMP-c-Fos-NFATc1 signaling.
Osteoclast is a kind of unique cells which is responsible for bone matrix absorption. It was widely reported that microRNAs (miRNAs) could regulate several physiological processes, including osteoclastogenesis. In our study, microarray analysis showed that miR-30a was down-regulated during osteoclastogenesis after RANKL (receptor activator of nuclear factor κB ligand) stimulation. Osteoclasts a...
متن کاملRegulation of Osteoclast Differentiation (Identification of osteoclast and macrophage fusion protein; DC-STAMP)
Osteoclasts are bone-resorbing multinuclear cells derived from hematopoietic stem cells or monocyte/ macrophage lineage cells. Recent identification of RANK/RANKL has provided new insights into the osteoclast differentiation pathway, enabling us to generate osteoclasts without stromal cells, which support osteoclastogenesis. In order to establish a pure osteoclast culture system, we identified ...
متن کاملHigh glucose inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation via downregulation of v-ATPase V0 subunit d2 and dendritic cell-specific transmembrane protein
The balance between bone formation and resorption is compromised in diabetes, which may contribute to the high risk of fractures in diabetic patients. However, the mechanism by which high glucose affects bone turnover remains to be elucidated. The present study demonstrated that high glucose inhibited receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclastogenesis. In order to...
متن کاملLuman is involved in osteoclastogenesis through the regulation of DC-STAMP expression, stability and localization.
Luman (also known as CREB3) is a type-II transmembrane transcription factor belonging to the OASIS family that localizes to the endoplasmic reticulum (ER) membrane under normal conditions. In response to ER stress, OASIS-family members are subjected to regulated intramembrane proteolysis (RIP), following which the cleaved N-terminal fragments translocate to the nucleus. In this study, we show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 200 شماره
صفحات -
تاریخ انتشار 2004